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Abstract. We explicitly take into account the effect of the hydrodynamic expansion profile on the gluonic
break-up of the J/ψ’s produced in an equilibrating parton plasma. Attention is paid to the space-time
inhomogeneities as well as Lorentz frames while deriving new expressions for the gluon number density
ng, the average dissociation rate 〈Γ̃ 〉, and the survival probability of ψ, S. A novel type of partial wave
interference mechanism is found to operate in the formula of 〈Γ̃ 〉. A non-relativistic longitudinal expansion
from the small length of the initial cylinder is found to push the S(pT) graph above the no flow case
considered by us earlier [9]. However, the relativistic flow corresponding to the large length of the initial
cylinder pushes the curve of S(pT) downwards at LHC but upwards at RHIC. This mutually different
effect on S(pT) may be attributed to the different initial temperatures generated at LHC and RHIC.

PACS. 12.38.Mh

1 Introduction

An extensive literature exists on the possible suppres-
sion [1–6] of the J/ψ mesons in a quark–gluon plasma and
their proposed regeneration [7]. Among the well known
mechanisms of J/ψ dissociation the one due to gluonic
bombardment [8] deserves special attention here. Recently
the present authors [9] considered the statistical mechanics
of the important physical observables viz. the gluon num-
ber density, thermally-averaged g–ψ break-up rate, and the
ψ meson survival probability appropriate to RHIC/LHC
initial conditions. We found [9] that these observables are
significantly affected if one employs improved expressions
for the gluon distribution function, the g–ψ relative flux,
and the ψ meson formation time.

Of course, it is a well-recognized fact that the longitudi-
nal/transverse expansion of the medium controls the mas-
ter rate equations [10] for the time-evolution of the plasma
temperature and parton fugacities. But the literature does
not tell how the fluid velocity profile itself influences the
Lorentz transformations connecting the rest frames of the
fireball, the plasma, and the ψ meson. In other words, since
the flow velocity profile causes inhomogeneities in space-
time, the scenario of the J/ψ gluonic break-up may be
affected in a quite non-trivial manner and the aim of the
present paper is to address this hitherto unsolved problem.

Section 2 below recalls a few aspects of relativistic hy-
drodynamics for the sake of ready reference. Next, a new
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expression for the gluon number density is derived in Sect. 3
showing how an extra dilation factor γ associated with the
flow appears. Next, in Sect. 4 careful Lorentz transforma-
tions are used to calculate the flux-weighted cross section
and an explicit dependence is brought out on the hydro-
dynamic velocity w observed in the J/ψ rest frame. Next,
Sect. 5 develops the machinery for computing the J/ψ sur-
vival probability as a function of transverse momentum.
Finally, Sect. 6 summarizes our main conclusions applicable
to non-relativistic/relativistic flows.

2 Aspects of hydrodynamics

Preliminaries

Consider the rest frame of the hot, dense fireball produced
in an ultrarelativistic heavy-ion collision. Within an initial
time span ti = τ0 ∼ 0.5 fm/c it is supposed to achieve lo-
cal thermal equilibrium. The plasma now expands rapidly,
gets cooled at the expense of the internal energy, and is
driven towards chemical equilibration through partonic re-
actions. The plasma’s life ends, i.e., freeze-out occurs at
the instant tlife when the temperature drops to 200 MeV,
say. Such a picture of collective flow is known to have a
profound effect on the measured dilepton spectrum [11],
the dependence of the color screening mechanism on the
equation of state [12], the anisotropy in the transverse-
momentum distribution [13] of the output hadrons, the
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azimuthal asymmetry of J/ψ suppression in non-central
heavy-ion collisions [14], etc.

Equation of motion

We employ the units � = c = 1 and follow closely the
hydrodynamic summary given by Pal et al. [12] based upon
the cylindrical symmetry appropriate to central collisions.
In the fireball frame a general time-space point x and the
4-velocity u of the fluid have the form

x = (t,x); u = (γ, γv),

γ =
(
1 + u2)1/2 =

(
1 − v2)−1/2

, (1)

where v is the local 3 velocity and γ is the corresponding
Lorentz factor. Ignoring viscosity the conservation law for
the energy-momentum tensor Tµν reads

∂µT
µν = 0; Tµν(x) = (ε+ P )uµuν + Pgµν , (2)

where the energy density ε and pressure P are supposed
to be measured in a frame comoving with the plasma. The
relationship between the fireball usual time t and medium
proper time τ is, of course,

dτ
dt

=
1
γ

; ti ≤ t ≤ tlife. (3)

Longitudinal expansion

In Bjorken’s boost-invariant one-dimensional flow the pro-
file admits a simple analytical solution:

v =
z

t
êz; τ =

(
t2 − z2)1/2 ≥ τ0, (4)

where êz is a unit vector along the collision axis. The cor-
responding temperature T ∝ τ−1/3 is known to fall rather
slowly, e.g. in the case of gold nuclei colliding at RHIC.
Hence the J/ψ suppression remains comparatively high via
the color screening/gluonic dissociation mechanisms.

Transverse expansion

As summarized in [11, 12] the 4-velocity profile becomes
quite intricate and a numerical integration of the dynamical
equations (2) and (3) becomes very hard in the case of a
3+1-dimensional expansion. For our purpose it will suffice
to assume that the collective flow occurs only along the
lateral directions without rotation as given by the empirical
ansatz

v =
r

t
êr; τ =

(
t2 − r2

)1/2
, (5)

where êr is the unit vector alongr in a cylindrical coordinate
system (r, z, φ). It is known from the numerical solution
of (2) that a transverse flow causes very rapid cooling in
the case of lead nuclei colliding at LHC. Hence the J/ψ
survival probability becomes relatively high via the color
screening/gluonic dissociation scenarios. We now proceed
to formulate the statistical mechanics of some physical
observables following closely the logic of [9].

3 Gluon number density

Preliminaries

Working in the fireball rest frame and assuming local ther-
mal equilibrium let the symbol x denote a typical time-
space point, u the medium 4-velocity, T the absolute tem-
perature, K = (K0,K) the gluon 4-momentum, 16 the
spin-color degeneracy factor, λg the gluon fugacity, f the
one-body Bose–Einstein distribution function, and ng the
gluon number density given mathematically by

f =
λg

eK·u/T − λg
; ng(x) = 16

∫
d3K

(2π)3
f. (6)

It may be noted that generally λg < 1 for a chemically
unequilibrated plasma and the calculation ofK ·u is tedious
in the fireball frame.

Comoving frame

If k = (k0,k) is the gluon 4-momentum in the local rest
frame of the plasma, then by Lorentz transformation

K · u = k0; K0/k0 = γ
(
1 + v · k̂

)
, (7)

where γ, v refer to the fluid motion of (1) and k̂ is a
unit vector along k. Substitution into (6) simplifies the
distribution function to

f =
λg

ek0/T − λg
=

∞∑
n=1

λng e−nk0/T . (8)

Also, upon taking the polar axis for integration along v̂ and
writing v · k̂ = |v| cos θkv our number density reduces to

ng(x) = 16
∫

d3k

(2π)3
K0

k0 f (9)

=
2
π3

∫ ∞

0
dk0k02

∫ 1

−1
d cos θkv (10)

×
∫ 2π

0
dφkv γ (1 + |v| cos θkv)

∞∑
n=1

λng e
−nk0/T

=
16
π2 γT

3
∞∑
n=1

λng
n3 . (11)

Remarks

This result is new and shows in a compact manner how
the number density depends upon γ, T , and λg (although
these dependences are generally interwoven through the
evolution equations). It may be stressed that in spite of
the occurrence of a v · k̂ term in (7) our final ng depends
on v2 through γ. Our equation (11) generalizes an earlier
expression obtained by Xu et al. [8] who ignored the flow
velocity v completely and worked with a factorized form
of the Bose–Einstein distribution containing λg only in
the numerator.
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Table 1. Initial values for the time, temperature, fugacities etc. at RHIC(1),
LHC(1) only [15]

T (GeV) ti = τ0 (fm) λg λq nv=0.1c
g (fm)−3 nv=0.9c

g (fm)−3

RHIC(1) 0.55 0.70 0.05 0.008 1.78 4.05
LHC(1) 0.82 0.5 0.124 0.02 14.73 33.63

Numerical estimate at ti

The behavior of (11) can be easily studied at the instant
when the thermalized fireball was formed in a high energy
heavy-ion collision. The initial conditions predicted by HI-
JING Monte Carlo simulations are summarized in Table 1.

There the gluon densities computed via (11) in the
non-relativistic (v ≈ 0.1c) and ultrarelativistic (v ≈ 0.9c)
regions are also listed, showing a relative enhancement by
the factor

nv=0.9c
gi

nv=0.1c
gi

≈ (1 − 0.01)1/2

(1 − 0.81)1/2
≈ 2.28. (12)

Temporal evolution

It is very tedious to employ the exact distribution function
f of (6) for determining how the fugacities and temperature
evolve with the proper time τ of the medium. Hence we shall
directly borrow the master rate equations from the existing
literature based upon an approximately factorized form of
f . It is plausible that we may assume that such an approxi-
mation will not markedly affect our final conclusions, since
λg < 1. For a longitudinal expansion parametrized by (4)
the relevant ordinary differential equations [10] are known
to be

λ̇g
λg

+ 3
Ṫ

T
+

1
τ

= R3 (1 − λg) − 2R2

(
1 − λ2

g

λ2
q

)
,

λ̇q
λq

+ 3
Ṫ

T
+

1
τ

= R2
a1

b1

(
λg
λq

− λq
λg

)
,

(
λg +

b2
a2
λq

)3/4

T 3τ = const. (13)

Here λq (λg) is the quark (gluon) fugacity, Nf the number
of flavors, and the remaining symbols are defined by

R2 = 0.5ng〈vσgg−→qq̄〉, R3 = 0.5ng〈vσgg−→ggq〉,
a1 = 16ζ(3)/π2, a2 = 8π2/15, (14)

b1 = 9ζ(3)Nf/π2, b2 = 7π2Nf/20.

Next, for the transverse expansion parametrized by (5)
the appropriate partial differential equations [12] read

∂τT
00 + r−1∂r

(
rT 01)+ τ−1 (T 00 + P

)
= 0 (15)

and

∂τT
01+r−1∂r

[
r
(
T 00 + P

)
v2
r

]
+τ−1T 01+∂rP = 0, (16)

where

T 00 = (ε+ P )u0u0 − P. (17)

Their solutions on the computer yield the functions
T (x), λg(x) and hence ng(x), subject to the stated ini-
tial conditions.

4 Thermally-averaged rate

Preliminaries

Next, we turn to the question of applying statistical me-
chanics to gluonic break-up of the J/ψ moving inside an
expanding parton plasma. In the fireball frame consider aψ
meson of massmψ, 4-momentum pψ = (p0

ψ,pψ), 3-velocity
vψ and dilation factor γψ defined by

vψ = pψ/p
0
ψ, γψ = p0

ψ/mψ =
(
1 − vψ2)−1/2

. (18)

The invariant quantum mechanical dissociation rate Γ for
a g–ψ collision may be written compactly as

Γ = vrelσ, (19)

where vrel is the relative flux and σ the cross section mea-
sured in any chosen frame. Its thermal average over gluon
momentum in the fireball frame reads

〈Γ (x)〉 =
16

ng(x)

∫̃
d3K

(2π)3
Γf. (20)

Here the tilde implies that the gluon is hard enough to break
J/ψ and the gluonic distribution function f is evaluated
at the location of the ψ meson viz. at the time-space point

x = (t,xψ) . (21)

The highly non-trivial integral (20) is best handled in the
ψ meson rest frame by generating several useful pieces of
kinematic information as follows.

Kinematics in J/ψ rest frame

Let q = (q0, q) be the gluon 4-momentum measured in
the ψ meson rest frame. Since the relative flux becomes
vRest
rel = c = 1, our invariant Γ reduces to the QCD-based

cross section [16]

Γ = σRest = B
(
Q0 − 1

)3/2
/Q05

; q0 ≥ εψ,

Q0 =
q0

εψ
≥ 1; B =

2π
3

(
32
3

)2 1

mc(εψmc)
1/2 ,

(22)
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where εψ is the J/ψ binding energy and mc the charmed
quark mass. This σRest possesses a sharp peak at the
gluon energy

q0p =
10εψ

7
= 0.92 GeV; Q0

p =
10
7
. (23)

Also, the energy variable for the massless gluon trans-
forms via

K0 = γψ
(
q0 + vψ · q ) = γψq

0 (1 + |vψ| cos θqψ) , (24)

with θqψ being the angle between the q̂ and v̂ψ unit vectors.
Furthermore, the fluid 4-velocity w = (w0,w) seen in the
ψ rest frame will be explicitly given by the Lorentz trans-
formations

w0 = γψ
(
u0 − u · vψ

)
= γψγ (1 − v · vψ) , (25)

w =
[
u− (u · v̂ψ) v̂ψ

]
+ γψ

[
(u · v̂ψ) − u0|vψ|] v̂ψ

= γ [v − γψvψ + (γψ − 1) (v · v̂ψ) v̂ψ] . (26)

Finally, the scalar product is

K · u = q · w = q0w0 − q0|w| cos θqw, (27)

where θqw is the angle between q̂ and ŵ. We thus have all
the ingredients needed to calculate the thermally-averaged
rate of (20).

Evaluation of 〈Γ (x) 〉

Upon taking the polar axis for the q integration along v̂ψ,
denoting the solid angle element by dΩqψ, and expanding
f in a power series, we can write

〈Γ (x)〉 =
16
ng

∫
d3q

(2π)3
K0

q0
σRest

∞∑
n=1

λng e
−nK·u/T (28)

=
2

π3ng

∫ ∞

εψ

dq0q0
2
∫ 4π

0
dΩqψγψ (1 + |vψ| cos θqψ)

×σRest

∞∑
n=1

λng e
−nq·w/T . (29)

This integral is performed in the appendix based on the
following nomenclature.

Symbols/notation

Using the nomenclature in the fireball frame we define

(θv, φv) = polar angles of v̂;

(θvψ , φvψ ) = polar angles of v̂ψ,

F = v · v̂ψ
= |v| [sin θv sin θvψ cos(φv − φvψ ) + cos θv cos θvψ

]
,

Y = γψ|vψ| − (γψ − 1)F,

w0 = γγψ(1 − F |vψ|); w = γ (v − Y v̂ψ) ,

|w| = [|w|2]1/2 = γ
[
|v|2 + Y 2 − 2Y F

]1/2
,

θψw = angle between v̂ψ and ŵ,

cos θψw =
1

|w| (w · v̂ψ) =
1

|w| (F − Y ). (30)

Also will be needed

Q0 = q0/εψ; Cn = nεψw
0/T,

Dn = nεψ|w|/T ; ρn = DnQ
0,

A±
n = Cn ±Dn = nεψ

(
w0 ± |w|) /T,

I0(ρn) = sinh(ρn)/ρn,

I1(ρn) = cosh(ρn)/ρn − sinh(ρn)/ρ2
n,

nK · u/T = nq · w/T = CnQ
0 − ρn cos θqw. (31)

Result of integration

From (A.4) we find

〈Γ (x)〉 =
8ε3ψγψ
π2ng

∞∑
n=1

λng

∫ ∞

1
dQ0Q02

σRest
(
Q0) e−CnQ0

,

×
[
I0(ρn) + I1(ρn)|vψ| cos θψw

]
. (32)

By decomposing the hyperbolics I0 and I1 into exponentials
this result can also be expressed as

〈Γ (x)〉 =
4ε2ψTγψ
π2|w|ng

∞∑
n=1

λng
n

∫ ∞

1
dQ0Q0σRest

(
Q0)

×
[(

1 + vψ · ŵ(1 − 1/ρn)
)

e−A−
nQ

0
(33)

−
(

1 − vψ · ŵ(1 + 1/ρn)
)

e−A+
nQ

0
]
.

Remarks

The expressions (32) and (33) are original and demonstrate
how the mean dissociation rate 〈Γ (x)〉 depends on the
hydrodynamic flow through |w| (or w0) as well as the angle
θψw in the notation of (30). The structure of exp(±DnQ

0)
tells us that a numerical treatment of (32) is convenient
if 0 ≤ |w| ≤ T/εψ while that of (33) is suitable if T/εψ ≤
|w| ≤ ∞. From the analytical viewpoint it is much more
advisable to work with the modified rate

〈Γ̃ (x)〉 ≡ ng(x)〈Γ (x)〉. (34)

This is because 〈Γ̃ 〉 is devoid of any ng factor appearing in
the denominator of (32). Furthermore, 〈Γ̃ 〉 will be seen to
enter directly in the survival probability e−W in (51) later.
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Analytical estimate

The physical interpretation of our graphs below will be
facilitated by deriving a rough approximation for 〈Γ̃ 〉 as
follows. In (32) we retain only the n = 1 term of the
summation, and approximate the integrand by its peak
value at Q0

p (cf. (23)) so that the desired estimate of (34)
becomes

〈Γ̃ (x)〉 ≈ 8ε3ψγψ
π2 λg

∫ ∞

1
dQ0Q02

σRest H

∝ λgγψH. (35)

Here the entire dependence on the flow velocity w is con-
tained in the function

H ≡ e−C1Q
0
p

[
I0
(
D1Q

0
p

)
+ I1

(
D1Q

0
p

) | vψ | cos θψw
]
,

(36)

with the coefficients C1, D1 and A±
1 read off from (31).

We are now ready to discuss some consequences of (35)
in three cases, viz., a static medium in the fireball frame,
no flow in the J/ψ rest frame, and ultrarelativistic flow in
either frame.

Static medium in fireball frame

Remembering the notation of (30) and (31) consider the
hypothetical case

v = 0; γ = 1; F = 0; Y = γψ|vψ|,
w0 = γψ; w = −γψvψ; Cn = nεψγψ/T, (37)

cos θψw = −1, Dn = Cn|vψ|; A±
n = Cn(1 ± |vψ|).

This is precisely the case treated in our earlier paper [9]
where the g–ψ relative flux was correctly taken in the ψ
meson rest frame. Equations (32) and (33) also improve
the work of Xu et al. [8] in which one had written the g–ψ
relative flux in the fireball frame. Figures 1 and 2 borrowed
from [9] display the temperature and transverse momentum
dependence of the usual rate 〈Γ 〉 based on (32) and (33)
relevant to the LHC(1) initial fugacity λgi. For the sake
of comparison the corresponding curves of the modified
rate 〈Γ̃ 〉 using (34) are drawn in Figs. 3 and 4. Due to the
assumed absence of flow there is no inhomogeneity with
respect to x and the J/ψ formation time is also ignored at
this stage. Various features of the indicated diagrams are
interpreted in the next paragraph.

Interpretation

(i) Following the arguments given by Xu et al. [8] it is
known that the peak of σRest at Q0

p gives a rich structure
to the usual rate 〈Γ 〉 in Figs. 1 and 2.
(ii) However, the modified rate 〈Γ̃ 〉 in Figs. 3 and 4 becomes
structureless, i.e., monotonic. This is because the gluon
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Fig. 1.The thermal-averaged gluon–ψ dissociation cross section
〈Γ 〉 ≡ 〈vrelσ〉 as a function of temperature at different transverse
momenta pT as in (19) of [9], i.e., in the absence of longitudinal
flow. The initial gluon fugacity is given in Table 1 at LHC energy
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Fig. 2. The variation of 〈Γ 〉 ≡ 〈vrelσ〉 with transverse momen-
tum at different temperatures [9] as in Fig. 1 in the absence of
a flow profile

number density ng in (11) contains a crucial T 3 factor
which changes from a low value, viz. 0.008 at T = 0.2 GeV,
to a high value, viz. 1.0 at T = 1 GeV. Such a T 3 coefficient
matters a lot in the conversion of 〈Γ 〉 to 〈Γ̃ 〉 via (34).
(iii) At fixed pT the steady increase of 〈Γ̃ 〉 with T in Fig. 3 is
caused by the growing exp (−A±

1 Q
0
p) factors of the estimate

(35) and (36).
(iv) At fixed T the monotonic decrease of 〈Γ̃ 〉 with pT in
Fig. 4 has a very interesting explanation. For the situation
(37) under study w = −γψvψ is antiparallel to vψ so that
cos θψw = −1. Hence the partial wave terms I0 and I1 of
H (36) interfere destructively in Fig. 4 making 〈Γ̃ 〉 small
as | vψ | grows.
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Fig. 3. The variation of the modified rate 〈Γ̃ 〉 ≡ ng〈Γ 〉 with
temperature at different values of transverse momentum cor-
responding to 〈Γ 〉 of Fig. 1 is depicted here
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Fig. 4. The variation of the modified rate 〈Γ̃ 〉 ≡ ng〈Γ 〉 with
transverse momentum at different values of temperatures cor-
responding to 〈Γ 〉 of Fig. 2 is shown here in the absence of flow

No flow in J/ψ rest frame

Next, consider a configuration in the fireball frame such
that the 3-velocities of the plasma and ψ meson coincide
at some x. This is possible if, for example, both the fluid
and ψ are moving in the transverse direction. Then in (30)
and (31) we put

v = vψ; F = |vψ|; w0 = 1; w = 0, (38)

Cn = nεψ/T ; ρn = 0; I0(ρn) = 1; I1(ρn) = 0.

Inserting this information into the exact formulae (32) and
(34) and attaching a suffix 0 we find

0 0.2 0.4 0.6 0.8 1
T (GeV)

0

0.5

1

1.5

2

2.5

3

<
 G

am
m

a_
til

de
>

_0
 (

G
eV

)
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p_T=4 GeV
p_T=6 GeV
p_T=8 GeV
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Fig. 5. The variation of the modified rate 〈Γ̃ (x)〉0 from (39)
with temperature for different pT’s, when the fluid 3-velocity
w in the ψ meson rest frame is zero

〈Γ̃ (x)〉0 =
8ε3ψγψ
π2

∞∑
n=1

λng e−nεψ/T
∫ ∞

1
dQ0 Q02

σRest.

(39)
Its variations with T and pT are displayed in Figs. 5 and
6, relevant to the LHC(1) initial fugacity. The crude pro-
portionality (35) now reduces to

〈Γ̃ (x)〉0 ∝ λgγψe−εψ/T , (40)

which is utilized below to explain some features of
the graphs.

Interpretation

(i) At fixed pT our 〈Γ̃ (x)〉0 of Fig. 5 rises monotonically
with T in analogy with the earlier Fig. 3. This is caused by
the e−εψ/T factor present in the estimate (40).
(ii) At fixed T our 〈Γ̃ (x)〉0 of Fig. 6 grows steadily with pT
in contrast to the earlier Fig. 4. Such a behavior is due to
the coefficient γψ occurring in (40).
(iii) The curves of Figs. 5 and 6 are consistently higher
than those of Figs. 3 and 4. The reason is that there is no
I1(ρn) term present in (39) to interfere destructively with
the I0(ρn) term in view of the restriction (38).

Ultrarelativistic flow in either frame

Finally, suppose that at a point x in the fireball frame
the medium is flowing ultrarelativistically (| v |→ 1) and
the J/ψ is moving slowly (|vψ| < 1/10, say). In the ψ
meson rest frame the Lorentz transformation (26) shows
that w almost equals γv so that cos θψw → v̂ψ · v̂. Hence,
in the case of a pure transverse expansion of the plasma
cos θψw can even become +1, implying constructive inter-
ference between the I0 and I1 terms of (36); this possibility
will, however, be discussed in a future communication. At
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Fig. 6. The variation of the modified rate 〈Γ̃ (x)〉0 from (39)
with pT’s for different values of T when the fluid 3-velocity w
in the ψ meson rest frame is zero

present, we illustrate the case of both the J/ψ and plasma
moving ultrarelativistically (in the transverse and longi-
tudinal directions, respectively) subject to the following
kinematic conditions:

v = 0.9êz; γ = 2.3; F = 0; Y = γψ|vψ|,

w0 = γγψ � 1; |w| ≈ γγψ − 1
2γγψ

,

cos θψw = − Y

|w| ≈ − 1
γ

;

D1 = εψ|w|/T ∼ εψγγψ
T

� 1,

A−
1 =

εψ
T

(
w0 − |w|) ≈ εψ

2Tγγψ
. (41)

Then I0(ρ1) → I1(ρ1) → exp(ρ1)/2ρ1 so that our rough
estimates (35) and (36) become

〈Γ̃ (x)〉 ∝ λgT

γ
exp

(
− εψQ

0
p

2Tγγψ

)[
1 − |vψ|2

γ

]
. (42)

This information will be utilized below for explaining the
main features of the graphs.

Interpretation

(i) For fixed pT, v, the exponential in (42) tends to 0 as
T → 0 and tends to 1 as T → ∞. Therefore, the growing
trend of 〈Γ̃ (x)〉 with T in Fig. 7 is unstable.
(ii) At fixedT , v the rich behavior of 〈Γ̃ (x)〉 with pT in Fig. 8
arises from a sensitive competition between the bracketed
factors of (42).
(iii) More precisely, at lower temperatures T ≤ 0.4 GeV
the exponential factor in (42) increases dominantly with
pT, causing 〈Γ̃ (x)〉 to grow.

0 0.25 0.5 0.75 1
T (GeV)

0

0.05

0.1

0.15

0.2

<
G

am
m

a_
til

de
>

 (
G

eV
)

p_T=2 GeV
p_T=4 GeV
p_T=6 GeV
p_T=8 GeV
p_T=10 GeV

Fig. 7. The variation of the modified rate 〈Γ̃ (x)〉 using (32)
and (34) as a function of temperature at different transverse
momenta for the ultrarelativistic longitudinal flow velocity,
v = 0.9c
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Fig. 8. The variation of the modified rate 〈Γ̃ (x)〉 using (32)
and (34) as a function of pT at different values of temperatures
as in Fig. 7 corresponding to ultrarelativistic longitudinal flow
velocity, v = 0.9c

(iv) But at higher temperatures T ≥ 0.8 GeV the third
bracket in (42) decreases prominently with pT, causing
〈Γ̃ 〉 to drop.
(v) Comparison of Figs. 3 and 4 with Figs. 7 and 8 tells that
the pT-dependence of 〈Γ̃ 〉 (unlike its T dependence) is quite
sensitive to the non-relativistic/ultrarelativistic nature of
flow in the fireball frame.

5 J/ψ survival probability

Next, we ask the important question as to how the explicit
collective flowprofile affects the birth anddeath scenarios of
ψ mesons within a quark–gluon plasma. Below we consider



574 B.K. Patra, V.J. Menon: J/ψ gluonic dissociation revisited: II. Hydrodynamic expansion effects

only longitudinal expansion; the case of transverse flow will
be dealt with in a future communication.

Pure longitudinal expansion

Suppose at a general instant t in the fireball frame the
plasma is contained inside a cylinder of radius R, cross
section A = πR2, length L, and volume V = AL. Keeping
the origin at its center and assuming a constant speed for
the longitudinal expansion we have

R = Ri, A = Ai, L = Lit/ti, V = Vit/ti, (43)

where the suffix i labels initial values. The ansatz (4) of
the velocity profile reads

v = zêz/t; −L/2 ≤ z ≤ +L/2, (44)

subject to the restriction that the speed at the edges ±L/2
must be less than c, i.e.,

L

2t
=

Li
2ti

< 1. (45)

Production configuration of J/ψ

Employing cylindrical coordinates let a typical ψ meson
be created at the instant tI , having position xψ

I , and
with transverse velocity vψI (in the mid-rapidity region)
such that

tI = ti + γψτF; xψ
I =

(
rψ

I , zIψ
)

=
(
rIψ, φ

I
ψ, z

I
ψ

)
,

vψ
I = vψ =

(
vψ

T, 0
)

= (vT, 0, 0),

F = v · v̂ψ = (zêz/t) · v̂T
ψ = 0, (46)

where τF ≈ 0.89 fm/c is the formation time of the bound
state in the cc̄ barycentric frame. Of course, the concept of
formation time was not utilized while drawing the graphs
1–8 in Sect. 4.

Kinematics of J/ψ trajectory

The position 3-vector at a general instant t becomes

xψ ≡ [rψ, zψ] =
[
rψ

I + (t− tI)vψT, zIψ
]
. (47)

The transverse trajectory will hit the cylinder of radius
R = RI after a time interval tRI by covering a distance
dRI such that

|rψI + tRIvψ
T| = RI ; tRI = dRI/vT, (48)

dRI = −rIψ cosφIψ +
√
R2
I − rIψ

2 sin2 φIψ.

In the fireball frame the full temporal range of our interest
is obviously

tI ≤ t ≤ tII ; tII = min(tI + tRI , tlife). (49)

This prescription was also utilized in [9] and it improves
the work of [8] by incorporating the formation time.

Formulation of S(pT)

Let us return to the modified dissociation rate derived in
Sect. 4. The value F = 0 (cf. (46)) greatly simplifies the
kinematics of (30). Furthermore, since the time-space point
x in (21) is to be chosen on the J/ψ trajectory itself, the
notation 〈Γ̃ (x)〉 of (34) is equivalent to

〈Γ̃ [t]〉 ≡ 〈Γ̃ (t, pT, z
I
ψ

) 〉. (50)

This depends parametrically on zIψ in view of the longitu-
dinal flow profile (44), and the upper limit tII (cf. (49)) of
the time variable depends on the production configuration
rIψ, φIψ. Then by the law of radioactive decay without re-
combination the effective survival probability of a chosen
ψ meson will be given by the exponential e−W with

W =
∫ tII

tI

dt ng[t] 〈Γ̃ [t]〉. (51)

Upon averaging e−W over the production configuration
of the ψ’s we arrive at the final expression for the net
survival probability:

S(pT) =
∫
VI

d3xIψ

(
R2
I − rIψ

2
)

e−W

/∫
VI

d3xIψ

(
R2
I − rIψ

2
)
, (52)

d3xIψ = drIψ r
I
ψ dφIψ dzIψ.

Remarks

This is a new result showing that due to the inhomogene-
ity introduced by the ensuing longitudinal expansion the
spatial integration in (52) must extend over the volume
VI = VitI/ti available at the instant of creation. Hence
the entry concerning the initial length Li and radius Ri
of the plasma becomes essential in Table 2. However, in
the absence of collective flow the integral needs to run
only over the cross sectional area AI of the fireball as was
done in [8, 9].

Table 2. Colliding nuclei, collision energy, initial length of
cylindrical QGP, and its radius at RHIC(1) and LHC(1). The
length is assumed to lie in the range 0.1 ≤ Li ≤ 1 fm since the
sea-quarks of the nucleon are spread over a distance of order
Λ ≈ 1 fm. [We do not use the Li corresponding to directly
Lorentz-contracted, disc-shaped nuclei to avoid too large or
too small values.]

Nuclei Energy (
√
s) Li Ri

(GeV/nucleon) (fm) (fm)

RHIC(1) 197Au 200 0.1 ≤ Li ≤ 1 6.98

LHC(1) 208Pb 5000 0.1 ≤ Li ≤ 1 7.01
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Numerical illustration

As pointed out in [9] the precise value of theψmeson forma-
tion time τF is ambiguous; howeverwe adopt τF � 0.89 fm/c
as a fair representative. For the chosen creation configu-
ration of the ψ meson the function W was first computed
from (51) and then the survival probability was numerically
evaluated using (52). Figures 9 and 10 show the dependence
of S(pT) on the transverse momentum corresponding to
the LHC(1) and RHIC(1) initial conditions, respectively
(cf. Tables 1 and 2). The dotted (Li = 0.1 fm) and dashed
(Li = 1 fm) curves are computed in the presence of longitu-
dinal flow while the solid curve is borrowed from [9] in the

absence of hydrodynamic flow profile. The main features
of these graphs may be explained as follows.

Interpretation

(i) In the absence of flow, i.e., for v = 0, the S(pT) solid
lines in Figs. 9 and 10 rise steadily with pT. This is because
〈Γ̃ 〉 of Fig. 4, and hence the W integral of (51), diminish
with pT.
(ii) In the presence of flow with a small initial length Li ∼
0.1 fm the S(pT) dotted curves in Figs. 9 and 10 are slightly
above the solid line. To explain this, we note that the flow
profile v = z/t remains non-relativistic over short lengths
and the destructive interference between the I0 and I1
terms in (36) becomes slightly stronger (compared to the
v = 0 case). The consequent drop of 〈Γ̃ 〉 or W pushes
S(pT) upwards.
(iii) In the presence of flow with a large initial length of
Li = 1 fm the S(pT) dashed curve lies below the solid line
in the LHC case (cf. Fig. 9) but lies above the solid line in
RHIC case (cf. Fig. 10).
(iv) To explain this peculiar contrast between Figs. 9 and
10 we note that as the expanding cylinder becomes much
bigger than 1 fm the flow profile v = z/t may become
relativistic over a substantial part of its length so that the
graphs of Fig. 8 can be employed. At higher temperatures
(0.8 < T < 0.6, say) at LHC the 〈Γ̃ 〉 curves are known
to drop with increasing pT. But at lower temperatures
(0.6 < T < .2), say) at RHIC the 〈Γ̃ 〉 curves rise with pT
in Fig. 8 whereby a contrast occurs.
(v) Of course, the relative shift in S(pT) due to longitudinal
flow is only about 10% to 15% even at pT = 10 GeV.

6 Conclusions

(a) In this paper we have extended our earlier work [9] by
explicitly including the effect of a hydrodynamic expansion
profile on the gluonic dissociation of J/ψ’s created in an
equilibrating QGP. The treatment of Sects. 3 and 4 is very
general in the sense that both the fluid velocity v and the ψ
momentum pψ are arbitrary. Only in Sect. 5 we specialize
to a longitudinal fluid expansion and transverse motion of
ψ.
(b) Our theoretical formulae for the gluon number density
ng (cf. (11)), modified g–ψ break-up rate 〈Γ̃ 〉 (cf. (34)), and
the survival probability ofψ,S (cf. (52)), are new. These are
derived bymaking careful Lorentz transformations between
the rest frames of the fireball, plasma, and ψ meson.
(c) At specified fugacity λg the effect of the flow velocity
v is to increase the number density of hard gluons (which
are primarily responsible for breaking the J/ψ’s) as shown
in the numerical estimate (12).
(d) Our expression (32) and (34) of 〈Γ̃ (x)〉 contains partial
wave contributions called I0 and I1 whose mutual interfer-
ence is controlled by the anisotropic cos θψw factor. This
significantly affects the variation of 〈Γ̃ 〉 with T , pT and v
as depicted in Figs. 3–8.
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(e) The presence of a longitudinal expansion pushes up
the graph of S(pT) compared to the v ≡ 0 case for non-
relativistic flow appropriate to a small initial length of
Li = 0.1 fm.
(f) However, in the case of relativistic longitudinal flow
appropriate to a larger initial length of Li = 1 fm the
downward shift of S(pT) graph at LHC is in sharp contrast
to the upward shift at RHIC. Such a contrast between the
behaviors at LHC and RHIC is caused by the different
initial temperatures generated therein. The relative shift
is, however, is only 10%–15% even at pT = 10 GeV.
(g) In a future communication we plan to study the detailed
effect of a transverse expansion of the medium on S(pT).
It is expected that there will be a more rapid cooling with
time and also possibly constructive interference in (35).

Acknowledgements. VJM thanks the UGC, government of In-
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Kumar Srivastava for useful discussions during this work.

Appendix

Evaluation of the integral (28)

Our derivation proceeds through the following steps.

First step

We recall the symbols (30) and (31); we work in the ψ
meson rest frame, and rewrite (29) as

〈Γ (x)〉

=
2

π3ng

∫ ∞

1
ε3ψdQ0Q02

∫ 4π

0
dΩqψ γψ

[
1 + |vψ| cos θqψ

]
×σRest

∞∑
n=1

λng e
−CnQ0+ρn cos θqw . (A.1)

Second step

Next, a partial wave expansion is done of the exponential

eρn cos θqw =
∞∑
l=0

iljl(−iρn)(2l + 1)Pl(cos θqw) (A.2)

=
∞∑
l=0

Il(ρn)4π
l∑

m=−l
Y m

∗
l (Ωqψ)Y ml (Ωψw).

Here ρn = DnQ
0 as before, jl denotes the spherical Bessel

functions, Il(ρn) = iljl(−iρn), the addition theorem has
been used for the Legendre polynomial Pl(cos θqw), and

Ωψw are the polar angles of v̂ψ with respect to the local
flow direction ŵ.

Third step

Next, the relevant angular integral appearing in (A.1) and
(A.2) reads∫ 4π

0
dΩqψ

[
1 + |vψ| cos θqψ

]
Y m

∗
l (Ωqψ)

=
√

4π

[
δl0 +

√
1
3

|vψ|δl1
]
δm0, (A.3)

due to the orthogonality of spherical harmonics.

Fourth step

Finally, inserting the informations (A.2) and (A.3) back
into the starting expression (A.1) we obtain

〈Γ (x)〉 =
2

π3ng

∫ ∞

1
ε3ψdQ0Q02

γψ σRest

∞∑
n=1

λng e
−cnQ0

(A.4)

× 4π
∞∑
l=0

Il(ρn)

[
δl0 +

√
1
3

|vψ|δl1
]√

4πY 0
l (Ωψw),

which indeed coincides with (32) of the text.
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17. C. Gerschel, J. Hüfner, Phys. Lett. B 207, 253 (1988)


